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Linear Response / Equation of Motion

In linear response (LR) and equation of motion
(EOM) the following generalized eigenvalue problem
is solved, (

E [2] − ωS [2]
)
X = 0 , (1)

where the Hessian and metric matrices are defined as

E [2] =

(
A B
B∗ A∗

)
, S [2] =

(
Σ 0
0 −Σ∗

)
(2)

The submatrices are defined according to

AIJ =
〈
0
∣∣∣[R̂†

I,
[
Ĥ, R̂J

]]∣∣∣ 0〉 (3)

BIJ =
〈
0
∣∣∣[R̂†

I,
[
Ĥ, R̂†

J

]]∣∣∣ 0〉 (4)

ΣIJ =
〈
0
∣∣∣[R̂†

I, R̂J

]∣∣∣ 0〉 (5)

With four different LR/EOM parameterizations1,

R̂naive
I = ĜI (6)

R̂proj
I = ĜI |0⟩ ⟨0| −

〈
0
∣∣∣ĜI

∣∣∣ 0〉 (7)

R̂sc
I = UĜIU

† (8)
R̂st

I = UĜI |HF⟩ ⟨0| (9)

All of the parameterizations are implemented in
SlowQuant2.

Wave function parameterization

The unitary coupled cluster wave function is param-
eterized as,

|UCC(θ)⟩ = exp

(∑
I

θI

(
T̂I − T̂ †

I

))
|HF⟩ (10)

Orbital rotations parameterization can be introduced
as an integral transformation.The ground-state en-
ergy is found my performing a minimization over
both types of parameters,

Egs = min
θ,κ

〈
UCC(θ)

∣∣∣Ĥ(κ)
∣∣∣UCC(θ)

〉
(11)

A parameter might be redundant,

Egs = min
{θ,κ}\P

〈
UCC(θ)

∣∣∣Ĥ(κ)
∣∣∣UCC(θ)

〉∣∣∣∣
P∈R

(12)

That is, a parameter is redundant if the ground-state
energy can be recovered for any value of the parame-
ter.

Helium atom

For the Helium atom in 6-31G the FCI expansion can
be reached using UCCSD,

|FCI⟩ = exp
(
θ1

(
T̂1 − T̂ †

1

)
+ θ2

(
T̂2 − T̂ †

2

))
|HF⟩

(13)

= c0 |1100⟩ +
c1√
2
(|1001⟩ − |0110⟩) + c2 |0011⟩

(14)

Changing the orbital rotation parameter does not
change Egs,
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Figure 1: The CI coefficients from the FCI solution of the helium atom using the 6-31G basis set
as a function of the redundant orbital rotation κ01. The case of κ01 = 0 corresponds to Hartree-
Fock orbitals. Note that the energy is shown to highlight that it can be held constant with respect to
change in κ01.3

The naive and projected parameterizations have a
metric matrix, Eq. (2), that is different from identity.
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Figure 2: The lowest singlet excitation energy of the helium atom using the 6-31G basis set as a
function of the redundant orbital rotation parameter κ01. κ01 = 0 is the Hartree-Fock solution.3

The metric can become singular for naive-LR and
proj-LR, resulting in wrong excitation energies.

The effect of the redundant orbital rotation on calcu-
lated excitation energies becomes more pronounced
when considering a truncated LR expansion.
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Figure 3: The singlet single excitation energy and singlet double excitation energy of the He atom
calculated in the 6-31G basis set with LR singlet singles and LR singlet doubles, respectively, as a
function of the redundant orbital rotation parameter κ01.4

For st-LR the sum of excitation energies is con-
served.

For the other parameterizations, the sum of excita-
tion energies is not conserved.

Shot noise impact

In the context of quantum computing, calculating the
matrix elements in the LR equations will have an as-
sociated shot-noise.
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Figure 4: The mean value, µω1
, and standard deviation, σω1

, of the first excitation energy for the
helium atom using the 6-31G basis set. The mean value and standard deviation are obtained on
the basis of 100 calculations, each using 1000 shots. cond (Σ) is the condition number of Σ for
the noiseless matrix, calculated using the L2 norm. All quantities are reported as a function of the
redundant orbital rotation κ01.3

For systems with more than one orbital rotation pa-
rameter, the problem can be induced by maximizing
the condition number of the metric,

κdiv = argmax
κred

{
cond

(
Σ
(
κred))} (15)
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Figure 5: Calculated absorption spectra of H4 using 100k shots on shot noise simulator. Each spec-
trum was calculated 10 times. The H4 molecule is rectangular with the sides being 1.5 Å and 1.8
Å.3

The noise sensitivity of naive-LR and proj-LR de-
pends significantly on the orbitals.

State-transfer LR

The st-LR takes the form of a unitary transformed
Hamiltonian. The effect of redundant parameters on
the excitation energies can thus be investigated by
maximizing the trace of the LR equations.{
θbad,κbad} = argmax

θ,κ

∑
|I⟩∈|SS⟩

〈
I
∣∣∣U †

θU
†
κĤUκU θ

∣∣∣ I〉
(16)

subject to E0 =
〈

HF
∣∣∣U †

θU
†
κĤUκU θ

∣∣∣HF
〉
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Figure 6: Calculated electronic spectra of LiH in the STO-3G basis using different levels of theory.
The oo-UCCSD(θbad,κbad) spectrum is omitted from the figure as it is visually on top of the oo-
UCCSDT(θbad,κbad) spectrum.4

By minimization instead of maximization in Eq. (16),
this procedure can be used to improve the perfor-
mance of small st-LR expansions.
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Figure 7: LiH/STO-3G. Spectra calculated with state-transfer LR singles (st-LRS) using various
UCC wave functions, where the wave function parameters are constrained optimized for the first
three excited states denoted with (θopt

3s ,κ
opt
3s ). θ

WF refers to the θ-values found by only optimizing
for the ground-state. θopt and κopt are parameters optimized for all 8 excitations in st-LRS.4

Constrained multi-state wave function optimization
can be used to improve small LR expansions.
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