Problems in Linear Response and Equation of Motion formalisms
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Linear Response / Equation of Motion

In linear response (LR) and equation of motion
(EOM) the following generalized eigenvalue problem
1s solved,

(Em _ wS[Q]) X=0. (1)
where the Hessian and metric matrices are defined as
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The submatrices are defined according to
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With four different LR/EOM parameterizations’,
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All of the parameterizations are implemented 1n
SlowQuant?.

Wave function parameterization

The unitary coupled cluster wave function 1s param-
eterized as,

ucc@)) =exp [ Y0, (T]—f}) HF) (10)
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Orbital rotations parameterization can be introduced
as an integral transformation.The ground-state en-
ergy 1s found my performing a minimization over
both types of parameters,

Eos = Igin <UCC(9)
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A parameter might be redundant,
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That 1s, a parameter 1s redundant 1f the ground-state
energy can be recovered for any value of the parame-
ter.

Helium atom

For the Helium atom 1n 6-31G the FCI expansion can
be reached using UCCSD,

FCI) = exp (91 (j} _ T{f) + 6, (TQ T )) HF)
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Changing the orbital rotation parameter does not
change b,
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Figure 1: The CI coefficients from the FCI solution of the helium atom using the 6-31G basis set
as a function of the redundant orbital rotation ~g;. The case of ky; = 0 corresponds to Hartree-
Fock orbitals. Note that the energy is shown to highlight that it can be held constant with respect to
change in k;.>

The naive and projected parameterizations have a
metric matrix, Eq. (2), that 1s different from 1dentity.
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Figure 2: The lowest singlet excitation energy of the helium atom using the 6-31G basis set as a
function of the redundant orbital rotation parameter xg;. <o; = 0 is the Hartree-Fock solution.?

The metric can become singular for naive-LR and
proj-LR, resulting in wrong excitation energies.

The eftect of the redundant orbital rotation on calcu-
lated excitation energies becomes more pronounced
when considering a truncated LR expansion.
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Figure 3: The singlet single excitation energy and singlet double excitation energy of the He atom
calculated in the 6-31G basis set with LR singlet singles and LR singlet doubles, respectively, as a
function of the redundant orbital rotation parameter ;.

For st-LR the sum of excitation energies 1s con-
served.

For the other parameterizations, the sum of excita-
tion energies 1s not conserved.

Shot noise impact

In the context of quantum computing, calculating the
matrix elements 1n the LR equations will have an as-
sociated shot-noise.

naive divergence —— naive-LRSD

—_ proj divergence —— proj-LRSD

o

© 2.5

L
'_I§ 0.0 I I I I I I
g 101 A
S
L 107! -

r3_| I I I I I I I
o)
W
5 1011 _

C

o

O

100 —T EE— T —T T —
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ko1

Figure 4: The mean value, [, and standard deviation, o, , of the first excitation energy for the
helium atom using the 6-31G basis set. The mean value and standard deviation are obtained on
the basis of 100 calculations, each using 1000 shots. cond (E) is the condition number of X for
the noiseless matrix, calculated using the L* norm. All quantities are reported as a function of the
redundant orbital rotation .’

For systems with more than one orbital rotation pa-
rameter, the problem can be induced by maximizing
the condition number of the metric,

kY = arg max {Cond (E (nred)) } (15)
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Figure 5: Calculated absorption spectra of H, using 100k shots on shot noise simulator. Each spec-
trum was calculated 10 times. The Hy molecule is rectangular with the sides being 1.5 A and 1.8

A3

The noise sensitivity of naive-LR and proj-LR de-
pends significantly on the orbitals.

State-transfer LR

The st-LR takes the form of a unitary transformed
Hamiltonian. The effect of redundant parameters on
the excitation energies can thus be investigated by
maximizing the trace of the LR equations.
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Figure 6: Calculated electronic spectra of LiH in the STO-3G basis using different levels of theory.
The oo—UCCSD(Obad, k) spectrum is omitted from the figure as it is visually on top of the oo-
UCCSDT(6", k") spectrum. *

By minimization instead of maximization in Eq. (16),
this procedure can be used to improve the perfor-
mance of small st-LR expansions.
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Figure 7: LiH/STO-3G. Spectra calculated with state-transfer LR singles (st-LRS) using various

UCC wave functions, where the wave function parameters are constrained optimized for the first

three excited states denoted with (05, k3 ). @' refers to the f-values found by only optimizing

for the ground-state. @°™ and K°P' are parameters optimized for all 8 excitations in st-LRS.*

Constrained multi-state wave function optimization
can be used to improve small LR expansions.
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